Sour ce Update Capturein I nfor mation Agents

Naveen Ashish*, Deepak Kulkarni and Y ao Wang
NASA Ames Research Center
MS 269/3 Moffett Field CA 94035
{ashi sh, kul karni, yxwang} @nmail . arc. nasa. gov

Abstract

In this paper we present strategies for successfully
capturing updates at Web sources. Web-based
information agents provide integrated access to
autonomous Web sources that can get updated. For many
information agent applications we are interested in
knowing when a Web source to which the application
provides access, has been updated. We may also be
interested in capturing al the updates at a Web source
over a period of time i.e., detecting the updates and, for
each update retrieving and storing the new version of
data. Previous work on update and change detection by
polling does not adequately address this problem. We
present strategies for intelligently polling a Web source
for efficiently capturing changes at the source.

1 Introduction

An important issue with internet information agents is
that of addressing the problem of updates at the remote
Web sources being integrated. Information agents
(Cohen 2000; Knoblock, Minton et al. 2001; Barish and
Knoblock 2002; Doan and Halevy 2002; Kambhampati,
Nambiar et al. 2002; Zadorozhny, Raschid et al. 2002)
and other Web-based information extraction and
integration systems (Davulcu, Yang et a. 2000;
Kushmerick 2000; Byers, Freire et al. 2001; Popa,
Velegrakis et al. 2002) provide integrated access to data
residing in different Web sources. These Web sources
are autonomous and the data on the Web pages at these
sources may change. For performance optimization,
information agents often cache or materialize data from
the remote Web sources locally (Adali, Candan et al.
1997; Ashish, Knoblock et al. 2002). When updates or
changes occur at Web sources, the cached data becomes
inconsistent with the original data. To avoid providing
the user with stale or inconsistent data, the information
agent must update the cache as changes take place at the
original Web sources. The information agent may also
reguire access to the different updated versions of data at
a Web source over a period of time. For instance the
main headline story at the CNN news ste
(www.cnn.com) gets updated every hour or so (the same
news story may get updated or adifferent newsitem

0 Naveen Ashish is with the USRA Research Ingtitute for Advanced
Computer Science at NASA Ames.

appears as the headline news) and an information agent
may require access to all the different headline news
stories [we refer to the distinct dataitems (i.e., stories) as
versions] that appeared as headline news over a
particular day. We use the term capture for the process
of detecting an update and then retrieving and storing
the new updated version of the data from a source. The
information agent may also be monitoring (Barish and
Knoblock 2002) a source (via wrappers) and want to be
notified when an update has taken place.

The time (and frequency) of changes at many Web
sources are not known in advance. As a result, the
information agent must poll the Web source(s) to check
for updates and changes. To minimize the probability of
missing an update we must poll the sources very
frequently. However this high polling frequency may
not be feasible due to limited network and computational
resources. In fact many sources would not allow polling
the source at a high frequency as this causes an
undesirable load on their Web server. In this paper we
present the initial results of our work in progress on
capturing changes at a Web source while palling the
source only a limited number of times. Our approach is
based on our observation of regularities of update times
at many autonomous Web sources.

The problem of detecting changes at a source and
synchronizing the local copy has been studied in many
contexts such as Web data sources, Web proxy servers,
Internet crawlers and client-server database systems.
(Cho and Garcia-Molina 2000) describes an approach to
refreshing the local copy of an autonomous data source
to keep the copy up-to-date. (Cho and Ntoulas 2002)
presents a sampling-based strategy for keeping local
copies of data up-to-date in a World Wide Web or data
warehousing environment. (Barish and Obraczka 2000)
presents a survey of a variety of caching techniques for
the World Wide Web. (Bright and Raschid 2002)
presents a Web caching approach where a trade off can
be made between the recency of the retrieved
information versus the latency to retrieveit. Finally there
is work on synchronizing updates in data warehousing
(Labrinidis and Roussopoulos May 2000) and in client
server database system (Gal and Eckstein 2001)
environments. The above efforts have provided

approaches for optimizing various important aspeds in
synchronizing cached data such as minimizing the “age’
of objeds (i.e., ensuring that the data is refreshed very
soon after it is updated), maximizing the average
“freshness (i.e, ensuring that most of the data is
consistent with that in the original source) etc. However,
an important probem that has not been addresed by
existing approaches is that of capturing all the danges
over aperiod of time. As another example, a Web source
that we have etensively studied is a source in the
aviation domain — the Digital Automatic Terminal
Information services (D-ATIS) messages published at
the ARINC Website' where air traffic messages are
published at the rate of 1-2 messages per hour. A new
message overwrites the existing message at the Web site.
In one of our appli cations, the information agent requires
accessto all the different messages (versions) published
over a particular day. In thisappli cation, the information
agent provides integrated access of the ATIS data with
other aviation related data sources (such as radar data,
weather data etc.) and some typical queries (performed
by aviation safety analysts) require access to al the
distinct ATIS messages over an entire day. Capturing all
versions of data from a Web sourceis also important in
archival applications sich as Web archive (Cho 2003
and the Wayback machine (http://www.archive.org/)
where we wish to archive all the different versions of an
entire Web sourceas it changes over time. Existing work
on polling and change detedion addresses isales sich as
optimizing the age or freshnessof cached data items but
does not provide a way to effedively capture danges at
a Web sourcewhile palling it a limited number of times.
In this paper we present an approach to capturing all (or
the maximum posshble) updates at a Web source over a
period of time with limited resource @nstraintsi.e., we
will poll the sourceonly alimited number of times. Our
approach is motivated by and based on our observation
that for many sources, though autonomous, the updates
not only ocaur with a regular frequency but also
(mostly) at or around certain times or between certain
timeintervals.

The rest of this paper is organized as follows. In sedion
2 weformali ze the problem and our optimization goal. In
sedion 3 we present our observations of the distributions
of updates at Web sources. We then present strategies for
polli ng the Web sources and synchronizing data based on
thefact that the update distributions foll ow regul ariti es at
many sources. We also present experimental results
supporting the validity of our hypotheses and
effediveness of the approach. Finaly in sedion 4 we
discusson going work and conclusion.

2. Formalizing the Problem
We first define some metrics that will alow us to state
our goal of effedively capturing updies formally. The

! http://www.arinc.com/products/voice data comnvd atishtml

metrics also will be a meansto evaluate the dfediveness
of various grategies for capturing updites. We then
present a formal statement of the dange a@pture
optimizaion problem.

2.1 Metrics

(@) Change Reall: We introduce the Change Recall
metric, which is a measure of how succesful we have
been in capturing the danges at a source Formally,
Change Reall i s defined as the number of changed items
downloaded, over the total number of changed itemsin a
particular time period. For instance if the ATIS source
was updated 30times a particular day (i.e., there were 30
different messages published over the day) and we
captured 27of these, then the Change Recll would be
27/30=10.9. Similarly if there were 18 dstinct headline
stories that appeared as the top story on the CNN Web
ste and we aptured 15 dstinct stories, the Change
Reall would be 1518 =0.83.

Ideally we would want the Change Real to be 1. This
may not be posdble given resource onstraints, so our
goal isto maximize Change Recall .

(b) Freshnessand Age
The Freshnessand Age metrics were defined in (Cho and
Ntoulas 2002. The freshnessof a cached data item F is
defined as:
F =1 if the ached dataitem isupto date

= 0 otherwise

The age A of an objed is defined as:
A =0 if the ached objed isupto date

=t - t, if the cached objed isnot upto date, where t=
current time and t, = time of last update

2.2 Problem Statement

If we are polling a source for deteding updites, and
polling with limited frequency, the particular times at
which we poll can significantly affed the Change Recall .
For instance consider again the updates at the ATIS
source, where the update times are as own in Table 1.

1:05, 1:14, 2:04, 2:15, 3:03, 3:14
Table 1. Update Time Log

Let’s say that we have the constraint that we can poll the
sourceonly at most 2 times per hour. A naive strategy of
polling the source once at the turn of every hour and
once again at 30 min past the hour (i.e, poll at 1pm,
1:30pm 2pm, 2:30pm .. .)) would cause us to misshalf
the updates and result in a poar Change Reall of about
0.5. A more intelligent strategy would be to poll the
source at 5 minutes past and 15 minutes past the hour
(1:05, 1:15, 2:05, 2:15 ...). With this grategy we would
capture aimost all the updates and achieve a Change
Reall of close to 1.0 The key probem is thus of

dedding at what times to poll a source such that the
Change Reall i s maximized. We define this formally.

Definition: Polling Strategy

A "polling strategy” is defined asatuple<T, S> where T
is a time period (such as an hour, day month etc.) over
which the polli ng times repeat in a cycle and,

S={S,S,,,Sy} isaset of times at which we poll the
sourcewithin each time period T.

So a strategy defined by <hour, {5,15,45} > implies that
in each hour we poll 3 times, at 5 minutes past, 15
minutes and 45minutes past the hour.

We now state the Change Reall optimization problem
formally:

Given:

O = aWeb source

T =time period

N = maximum number of timeswe @n pall Sinthetime
period T

H = previous history of updates at the source

Generate:

A polling strategy <T,S> such that the expeded Change
Reall is maximized, where we poll at most N timesin
thetime period T.

Note that in cetain applications we may aso be
interested in optimizing other metrics i.e., minimizing
the average age or maximizing the freshness A palling
strategy that maximizes Change Recall, can aso be used
to minimize the average age of cached dataitemsand in
fact performs better than existing strategies in many
cases!

3. Pdlling Strategy

We make use of the historical data for updete times at a
Web source to estimate the probability of missng
updates with any polling strategy. Like eisting
approaches, our approach is based on the assumption that
the historical pattern of updates (over an appropriatetime
period) at a Web sourceis agood predictor of the future
pattern of updates at that source We thusfirst talk about
our observations of updete time distributions at Web
sources and then present approaches for generating an
optimal polli ng strategy.

3.1 Update Time Distributions

While a source may change anytime, the times of
updates at many sources do follow certain regular
distributions . In (Cho and Ntoulas 2002 it was sown
that the Poisson processeffedively models change at the
Web sources they sampled. However there is a
difference in behavior between all Web pages of the
entire Weéb and a particular set of Web pages. While
hundreds of milli ons of Web pagesin an entire set can be
considered to have been changed by arandom processon
average, for a particular set of pages as well as different

scales of study, the randomness of the change
ocaurrences has to be addressed before we @an make
confident predictions about the polling. While the
Poison process may model updates of web sources in
general, spedfic sources may exhibit update distributions
that are distinctly different. It is our observation that for
many sources we @n use more accurate models to fit the
distribution of update times at a Web source For
instance for the ATIS source a log of update times for a
particular airport is gown in Table 1. Most of the
updates occur around 5min past or 15min past the hour.
This distribution is consistent across &veral months. Or
consider a source such as Hollywood.com. The ‘hew
movies this week” ? page changes once a week, mostly
on the thursday of the week, announcing new movies
releasing on Friday or the weekend. The fact that a
source gets updated acoording to some such distribution
and knowledge of this distribution can be exploited to
come upwith asmart strategy for polli ng that source For
instance from the observation that for the above ATIS
messages, there are mostly 2 messages published per
hour, the first by 5 min past the hour and the seand by
15 min past the hour , we @uld poll the sourceat 5 min
and 15min past the hour and we would capture most of
the updates. For the hollywood.com. source we @uld
just poll once a week, every thursday when the movie
screanings change. Of course many update distributions
will not be that smple.

Our semnd observation is that the distribution of updates
of a web page would depend on semantics of the web
pageitself. For example, the likelihood of updatesto the
CNN.com home page in a short time are higher if the
page is reporting a breaking story or a very rapidly
changing event.

So the update distribution isindeed helpful in dedding a
goad polli ng strategy. The problem isto come up with an
approach to generate such a strategy automatically given
the update distribution. We now describe two alternative
approaches to generating the optimal polli ng strategy.
(1) Empirical Approach: We @n systematicall y consider
all possble palling times for an interval of interest and
can use the historical information to compute how many
changes would have been mised if we had used
particular polling strategy. If this can be done in a
computationaly efficient manner, the approach can be
used to find an optimal strategy.

(2) Theoretical Moddling Approach: We @an model the
update patterns using an appropriate probability
distribution and do analysis based on this probability
distribution to infer the best polling strategy. This
approach has been taken in previous work and is
computationaly efficient.

3.1.1 Empirical Approach
Suppose{Ty, Ty, ... T¢ isthe set of time points at which

2 http://www.hdlywoodcom/movies'this week.asp

one would consider palling in the interval T, where T +
1 > T;. For example, {1, 2, ... 60} (minutes) isthe set of
time points at which one would consider polling ATIS
data in a typical hour (T = 60 minutes). We define a
probabilit y function, NumMisses(T;, k) as the number of
missed updites in the interval (T;, Ti) if we poll at T;
and T, and additionally poll | timesin the interval (T;,
Tiw) USiNg an optimal strategy. Let Polli ngSet(T;,k,l) be
the mrresponding set of time points at which one would
poll using the optimal strategy. Also, N is the maximum
number of timeswe @n poll in theinterval T as defined
in the probem statement. NumMises(T;, k, 0) can
generally be derived from historical data for all posshle
valuesof i and k.

We propose the following agorithm for computing the
NumMisses function efficiently for all possble | of
interest:

forl=1to (N -2)
fori=1tos
fork=1tos
NumMisses(T , k,I) = Min 10k

) (NumMisses(T | ,j,1)
+ NumMisses(T k-l = 1)

i+j

Let jmin be value of j for which above
expression is minimum

PollingSet(Ti,k,l)=PollingSet(Ti,k,1) U

PollingSet(T K - jmin,| -1

End for o
End for
End for

The set of time points in the best palli ng strategy in the
interval T is Polli ngSet(Tiin, Kmin, N-2) where i, and
kmin @re i and k for which NumMises(T;, , N-2) is
minimum.

In the abowve algorithm, NumMisss is computed for
o(s*s*N) input values. Each computation of
NumMisses(T; ,k,1) and Palli ngSet(T; ,k,I) can be donein
at most s deps. So the abowe algorithm can compute
NumMisses(T;, k , 1) and PollingSet(T; ,k,I) using at
most s** ® * N computations for all i, k and |. Asthe
final step involves computing the minimum of s ** 2
values, this algorithm can compute the best palling
strategy in O(s** * * N) steps.

Using the abowe algorithm we thus g/stematically
consider all possble mmbinations of polli ng times given
the polling frequency and determine which is the best
polling strategy. This approach is likely to be practical
for small values of s, but not for large values of s. In the
next sedion, we will describe another approach that can
be used even for large values of s.

3.1.2 Theoretical M odeling Appr oach

Generating the optimal polling strategy by exhaustive
search may be prohibitively expensive in many casesi.e.,
when there are a very large number of possble
combinations of posshle polling times and searching
through the entire space is expensive. We present an

efficient algorithm for determining anear optimal polling
strategy. The algorithm is based on the assumption that
the probability density function representing the update
probability of a particular data item on a Web source
being updited is uniform in small time intervals. This
asumption is reasonable but not completely accurate for
many Web sources. Thus the algorithm is not guaranteed
to find an optimal polling strategy but instead finds a
near optimal strategy that is amost as good as the
optimal strategy.

The algorithm is based on a couple of very eementary
characteristics of updates in different kinds of time
intervals. First, there may be intervalswhere only at most
one update @n ocaur. Thereis no nedl to poll multiple
times in such intervals, rather one @n poll just once, at
the end of the interval. Next, for intervals where two o
more updates may occur any time we neal to poll as
many times as we @n. For such intervals, if we know
how the probability of misdng an updete dhanges as a
function of the number of times we poll in that interval,
we @n systematically determine how many times to poll
in each such interval (given a limited number of total
polli ng times).

. There are thus two primary stepsin the algorithm:

) Find the timeintervalswherethere are zero
or a most one upcetes (we all such
intervals single update intervals) and assgn
poll s to those intervals appropriately.

(i) For the remaining intervals i.e., intervals
where 2 or more updates may ocaur (we
cal such intervals multiple update
intervals), and assgn the remaining polls

appropriately.

Consider again the ATIS messges. Let’s sy at most 3
messages are published (i.e., updated) every hour. We
tag these messages (the first, seand and third) as A, B
and C. Say the update probability distributions
(represented by probahility density functions) of each of
these messagesis as sown in Fig 2 which shows a plot
of update probability distributions versus time (in
minutes). A is updated only sometime between t=5 and
t=15min etc. If we poll only thricean hour, at t=15t=35
and t=50 we will capture all the updates A,B and C.

1 —A
0.8 + B
0.6 +
0.4 +

A AL

0.2 +

0 5 1015 20 25 30 35 40 45 50 55 60

Fig 2 Update Probabilit y Distributions

This is possble becuse the probability distributions of
A,B and C do not overlap anywhere. Only at most one
message (A,B or C) can get updated in a time interval
and we smply poll onceat the end of that interval. What
if the probability distributions do owerlap ? For instance
consider a different distribution as swown in Fig 3. Both
A and B can get updated between t=10 and t=20 and
bath B and C can get updated between t=30 and t=35.
These are the multiple update intervals. There are also
single update intervals. For instance only A may occur
between t=5 and t=20 (so we neead poll only once at the
end of this interval at t=20). Similarly we poll once at
t=10, t=30,t=35and t=40. Notethat thereisaposshility
of missng an update in this case. Two a more updates
(A and B) could ocaur between t=10 and t=20 and we
will capture only one of them. Also two a more updates
(B and C) could ocaur between t=30 and t=35. So far we
have assgned a total of 5 polls per hour. Suppose we
could poll more than 5 times. At what times sould we
poll additionally ? Polling more in a multiple update
intervals deaeases the probability of missng an update
in that interval. We will examine shortly as to how
exactly this probability varies with the number of times
we poll in the interval. So any additional polls sould be
assgned to the multi ple update intervals. But there could
be many such multiple update intervals. So how do we
relatively assgn the addtional polls between these
intervals ? For instancein the arrent example we have 2
multiple update intervals and if we had a total of 5
additional polls we could assgn 1 additional poll to the
first multi ple upcete interval and 4 to the second or 2 to
the first and 3 to the seand etc. Which assgnment of
these minimizes the total probability of missng an
update ? Having a model of the update probability
distributions of the updates in the different multiple
update intervals will alow us to determine the
probability of missng updites for various assgnments.
In general an update distribution may be of any form
within an update interval. However for many sources we
can approximate the probahility density function for an
update distribution to be uniform in that interval, for
intervals that are sufficiently small.

2 1! —A
5 —B
05 +
8 C
o
0 L

0 5 1015 20 25 30 35 40 45 50 55 60

time (minutes)

Fig 3. Update Probabilit y Distributions

For such cases, i.e., where approximating the probability
distribution as uniform in small intervals is reasonable,

we @n evaluate the probability of missng updites for
different assgnments and thus find the optimal
assgnment. We describe how we do this below. Let’s
say we have i such multiple updateintervals. Suppose we
poll K;timesin an interval i. What is the probability of
missng an update in the interval i now? We poll at
uniform sub-intervalswithin interval i as siown in Fig 4.
We will missan updateininterval i if and only if the two
updates ocaur together in any one of the K; sub-intervals.
The probability of bath updates occurring in a particular
subinterval is given by:

(Pra t/K)) * (Prg t/K;) = PraPrgt¥/K;?

’4 i thinterval
| >‘

—

sub paling Ki times
interval

Fig 4. Polling in a multiple update interval.

where Prn and Prg are the probability densities of A and
B in that interval respedively. The probability that two
updates ocaur together in any of the Ki sub-intervals is
smply:

Ki*(Pra t/K;) * (Prg t/K;) = PraPrgt?/K;

This expresson isof theform Cit¥K; where C=Pr,Prg is
a constant. Although we have ill ustrated the abowe for
the @ase where 2 updites can ocaur in an interval, the
expresson representing the probability of missng an
upcate is of the form where 2 or even more updates can
ocaur in an interval.

Now the probability of missng any updatein any of thei
multiple upcete intervalsis:

3" GEIK;

Note that we take al multiple updates to be of equal
length i.e, t. If the multiple updete intervals are not
originally of equal length we @n sub divide them into
intervals of length of the greatest common divisor of the
lengths of the (original) multi ple update intervals.

We have to find Ki such that ZKi=K

and =" i1 G/K;

isminimized. Thisisawell known optimization problem
and the minima li es when:
C/K?=ColK2 = ... C/K,2 (condition I)
Thus we smply assgn the K;s acocording to the abowe
equation. The algorithm to find a (near) optimal polli ng
strategy using theoretical modeling can be stated as
follows:

1. Find the update probability
distributions of the various
updat es.

2. Find the single updat e
i nterval s.

a. Poll once at the begi nning
and once at the end of
each such interval.

3. Find the mul tiple updat e
i nterval s.

a. Assign the remmining polls

to the mltiple update

interval s in t he

proportion def i ned by
condition | above

While we do not present a prodf here, the abowe
algorithm is linear in the number of posshble polling
points one would consider in an interval.

3.1.3 Experimental Results

We evaluate the dfediveness of our approaches by
measuring the Change Recll from the ATIS Web server
using various grategies®’. We used real historical update
time data colleded over several months from the ATIS
Web server and tested the strategies for Change Recll
over the actual ATIS source We evaluate threedifferent
strategies:

) A naive uniform strategy where given N
pollsin atime period (an hour in this case)
we simply poll N times at uniform intervals
in thetime period.

(i) An optimal polling strategy generated by
exhaustive search.

(iii) A near optimal polling strategy generated
by theoretical modeling.

——&— Naive (uniform)
—— Exhaustive search

Theoretical modeling

0.; ‘/-WHH A4

S A4

0.3

0.2

0.1

1 2 3 4 5 6 7 8 9 10 11 12

Polling frequency (times/hr)

Fig 5. Effedivenessof strategies.

3 Atthis paoint we have only evaluated the strategies with the ATIS
Web source However by the time of the workshopwe exped to
provide evaluation results with several other Web sources.

As we @n see in Fig 5 abowe, the optimal palling
dtrategies (bath by exhaustive search and theoretical
modeling) result in significantly better Change Reall
than the naive uniform strategy. The improvement is
more significant when the polling frequency is less
Thus exploiti ng the update time distribution indeed hel ps
in achieving a better Change Reall versus existing
sampling based approaches that would result in Change
Recll ohtained by the naive (uniform) approach. Also
the theoretical modeling strategy performs almost as well
as the exhaustive search strategy. So, this indicates that
in cases where the ehaudtive search dtrategy is
computationally expensive, finding a near optimal
strategy by theoretical modeling is a good alternative.
We must note that in some other scenarios the naive
strategy may perform significantly worse. For instance
suppose we had an update pattern that was of the form
{1:00, 1:05, 1:10, 1:15, 2:00, 2:04, 2:09, 2:15,3:01,3:05
..... } With a naive strategy with N=4 (i.e., polling at

1:00,1:15,1:30,2:00, ..) we would get a very poar
Change Reall of ~ 0.25 whereas with the optimal
strategies we would get a Change Reall of close to 1.0
when polli ng 4times an hour.

4. Work in Progress and Conclusion

In this paper, we introduced change reall as an
important metric to be mnsidered in remote data source
synchronization. Then, we noted that it is possble to
utilize knowledge of spedfic update probability
distributions and their dependence of domain semantics
in devising a polling strategy. We discussd two
different polling strategies we are using in our
applications. Based on preiminary results, these
strategies are more dfedive for capturing changes than
existing strategies, which do not focus on the dange
capture problem in particular and are based solely on the
frequency of updates. There are several tasks and issues
that we are working on right now, namely:

* More extensively studying the upcete patterns at
avariety of different autonomous Web sources.

» Teding the dfediveness of the polling
strategies with many other Web sources.

» Extending the theoretical modeling approach to
cases where the uniform distribution
approximation is not reasonable.

* Tedting the dfediveness of our strategies in
optimizing factors other than change @pture,
such as age and freshnessof cached oljeds.

» Utili zing the semantics of the data to predict the
probability of the next update and incorporating
this knowledge in generating the polling
strategy.

Besidesinformation agents, our change apture strategies
are also applicable to a variety of other systems sich as
Web crawlers, Web proxy server caches and Web
archiving systems where it is important to synchronize
data cached from autonomous urces.

References

Adali, S, K. S. Candan, et al. (1997). Query Caching and
Optimization in Distributed Mediator Systems.
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, Tucson, AZ.

Ashish, N., C. A. Knoblock, et al. (2002). "Selectively
Materializing Datain Mediators by Analyzing
User Queries." International Journal of
Cooperative Information Systems (1JCIS) 11(1-
2): 119-144.

Barish, G. and C. Knaoblock (2002). An Expressive and
Efficient Language for Information Gathering
on the Web. Proceedings of the Sixth
International Conference on Al Planning and
Scheduling (AIPS-2002) Workshop, Toulouse,
France.

Barish, G. and K. Obraczka (2000). World Wide Web
Caching:Trends and Techniques. |IEEE
Communications Magazine.

Bright, L. and L. Raschid (2002). Using Latency-
Recency Profiles for Data Delivery on the Web.
Proceedings of the 28th VLDB Conference,
Hong Kong, China.

Byers, S., J. Freire, et a. (2001). Efficient Acquisition of
Web Data through Restricted Query Interfaces.
Poster Proceedings of the Tenth International
World Wide Web Conference, WWW10, Hong
Kong, China.

Cho, J. (2003). Web History and Evolution Archiving
(WHEN).

Cho, J. and H. Garcia-Molina (2000). Synchronizing a
Database to Improve Freshness. Proceedings of
2000 ACM International Conference on
Management of Data (SIGMOD), Dallas.

Cho, J. and A. Ntoulas (2002). Effective Change
Detection Using Sampling. Proceedings of the
20th VLDB Conference, Hong Kong, China.

Cohen, W. (2000). "WHIRL: A Word-based Information
Representation Language.” Artificial
Intelligence 118(1-2): 163-196.

Davulcu, H., G. Yang, et al. (2000). Computational
Aspects of Resilient Data Extraction from
Semistructured Sources. Proceedings of the
Nineteenth ACM SIGMOD SIGACT-SIGART
Symposium on Principles of Database Systems,
Dallas, TX.

Doan, A. and A. Halevy (2002). Efficiently Ordering
Query Plans for Data Integration. Proceedings
of the International Conference. on Data
Engineering (ICDE), San Jose, CA.

Gal, A. and J. Eckstein (2001). "Managing Periodically
Updated Data in Relational Databases: A
Stochastic Modeling Approach.” Journal of the
ACM 48(6): 1141-1183.

Kambhampati, S., U. Nambiar, et al. (2002). Havasu: A
Multi-Objective, Adaptive Query Processing

Framework for Web Data Integration. Tempe,
ASU CSE TR-02-005.

Knoblock, C. A., S. Minton, et al. (2001). "The Ariadne
Approach to Web-based Information
Integration.” International Journal of
Cooperative Information Systems (1JCIS)
Special Issue on Intelligent Information Agents:
Theory and Applications 10(1/2): 145-169.

Kushmerick, N. (2000). "Wrapper Verification." World
Wide Web Journa 3(2): 79-94.

Labrinidis, A. and N. Roussopoul os (May 2000).
WebView Materialization. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Dallas, TX.

Popa, L., Y. Veegrakis, et al. (2002). Trandating Web
Data. Proceedings of the International
Conference on Very Large Databases (VLDB),
Hong Kong, China.

Zadorozhny, V., L. Raschid, et al. (2002). Efficient
Evaluation of Queriesin a Mediator for
WebSources. Proceedings of the ACM
SIGMOD Conference on Management of Data,
Madison, WI.

